Дипломная работа: Методы анализа мягких лекарственных форм в условиях аптеки

Заказ 380

Цена полной версии диплома: 3500 рублей

Введение

Глава 1 Основные принципы фармацевтического анализа

1.1 Классификация лекарственных форм препаратов Мягкие лекарственные формы

1.2 Критерии фармацевтического анализа

1.2.1 Ошибки, возможные при проведении фармацевтического анализа

1.2.2 Общие принципы испытаний подлинности лекарственных веществ

1.2.3 Источники и причины недоброкачественности лекарственных веществ

1.2.4 Общие требования к испытаниям на чистоту

1.2.5 Методы фармацевтического анализа и их классификация

Глава 2 методы анализа мягких лекарственных форм в условиях аптеки

2.1Физические методы анализа

2.1.1 Проверка физических свойств или измерение физических констант лекарственных веществ

2.1.2 Установление рН среды

2.1.3 Определение прозрачности и мутности растворов

2.1.4 Оценка химических констант

2.2Химические методы анализа

2.1.1Особенности химических методов анализа

2.1.2Гравиметрический (весовой) метод

2.1.3 Титриметрические (объемные) методы

2.1.4 Газометрический анализ и количественный элементный анализ

2.3Физико-химические методы анализа

2.3.1 Особенности физико-химических методов анализа

2.3.2 Оптические методы

2.3.3 Абсорбционные методы

2.3.4 Методы, основанные на испускании излучения

2.3.5 Методы, основанные на использовании магнитного поля

2.3.6 Электрохимические методы

2.3.7 Методы разделения

2.3.8 Термические методы анализа

2.4Биологические методы анализа

2.4.1Биологический контроль качества лекарственных средств

2.4.2Микробиологический контроль лекарственных средств

Выводы

Список литературы

Введение

Фармацевтический анализ — это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

Из расфасовки «ангро» берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

Глава 1 Основные принципы фармацевтического анализа

  • Классификация лекарственных форм препаратов Мягкие лекарственные формы

Лекарственные формы – лекарственные средства, обладающие определенными физико-химическими свойствами и обеспечивающие оптимальное лечебное действие.

Можно выделить следующие группы классификации лекарственных форм:

  1. Классификация лекарственных форм по агрегатному состоянию.
  2. Классификация лекарственных форм в зависимости от способа применения или метода дозирования.
  • Классификация лекарственных форм в зависимости от способа введения в организм.
  1. Классификация лекарственных форм по агрегатному состоянию.
  2. Твердые.
  3. Мягкие.
  4. Жидкие.
  5. Газообразные.
  6. Твердые лекарственные формы.
  • таблетки – дозированная лекарственная форма, получаемая путем прессования или формирования лекарственного средства, лекарственных смесей и вспомогательных веществ;
  • драже – дозированная лекарственная форма округлой формы, получаемая путем многократного наслаивания лекарственных средств и вспомогательных веществ в гранулы;
  • гранулы – однородные частицы (крупинки, зернышки) лекарственных средств округлой, цилиндрической или неправильной формы размером 0,2 – 0,3 мм.;
  • …………………….

…………………………….

……………………………..

2.1.3 Титриметрические (объемные) методы

Наибольшее применение получил титриметрическии метод. Название происходит от слова «титр» (фр.) — концентрация. Основная операция метода—титрование, заключающаяся в постепенном приливании к раствору анализируемого вещества титрованного раствора до точки эквивалентности. По измеренному объему титрованного раствора рассчитывают количественное содержание вещества.

Титриметрическии метод анализа получил широкое распространение потому, что он позволяет использовать разнообразные химические реакции и определять вещества, учитывая их свойства и строение. Он выполняется быстро, с большой степенью точности, не нуждается в сложном оснащении и может использоваться как в лабораториях, так и в аптеках.

Для количественного определения лекарственного вещества титриметрическим методом необходимы титрованный (стандартный) раствор, набор простой лабораторной посуды (бюретки, пипетки, мерные колбы колбы для титрования) и средств фиксации точки эквивалентности (конечной точки титрования). Последнюю фиксируют как с помощью индикаторов, так и с помощью физико- химических методов, измеряя приборами физическую константу системы (потенциометрическое, амперометрическое титрование и др. способы). Однако не всякая химическая реакция может быть применима для процесса титрования. К реакциям, используемым в титриметрическом методе, предъявляются следующие требования:

………………………….

………………………..

………………………..

2.3.4 Методы, основанные на испускании излучения

К этой группе методов относят фотометрию пламени, флуоресцентные и радиохимические методы.

ГФ XI включена эмиссионная и пламенная спектрометрия для целей качественного и количественного определения химических элементов и их примесей в лекарственных веществах. Измерение интенсивности излучения спектральных линий испытуемых элементов выполняют на отечественных пламенных фотометрах ПФЛ-1, ПФМ, ПАЖ-1. Регистрирующими системами служат фотоэлементы, связанные с цифровыми и печатающими устройствами. Точность определений методами эмиссионной, как и атомно-абсорбционной, пламенной спектрометрии находится в пределах 1—4%, предел обнаружения может достигать 0,001 мкг/мл.

………………………

………………………

………………………

2.3.8 Термические методы анализа

Нагревание лекарственных веществ до температуры, не вызывающей термического разложения, приводит к ряду изменений в их физических свойствах. Происходят полиморфные превращения, растворение в кристаллизационной воде, удаление сорбционной и кристаллизационной воды, сублимация, плавление, кипение. В зависимости от природы вещества, температуры и условий нагревания могут происходить химические превращения: структурирование, термическая, окислительная или гидролитическая деструкция. Термическая деструкция веществ сопровождается поглощением или выделением теплоты, а также образованием газообразных продуктов. Поэтому наиболее информативными и экспрессными методами оценки термической стабильности являются термография и термогравиметрия.

Термография позволяет оценить термическую стабильность по температурам термоэффекта, связанного с деструкцией исследуемого вещества.

Термогравиметрия дает возможность определить термическую стабильность по температуре, при которой наблюдается уменьшение массы вещества.

…………………………

…………………………

………………………

2.4.2. Микробиологический контроль лекарственных средств

Впервые в ГФ XI включен новый вид биологического контроля — определение микробиологической чистоты нестерильных лекарственных средств, т.е. установление состава и количества имеющейся в препарате микрофлоры и ее соответствие нормам, ограничивающим микробную обсемененность (контаминацию). Патогенные микроорганизмы (синегнойная палочка, кишечные бактерии) способны находиться в таблетках и гранулах от 6 до 18 мес., сохраняя морфологические и биохимические свойства. Микробиологическая чистота нестерильных лекарственных средств находится в зависимости от санитарно-гигиенических условий производства, дополнительной обработки сырья с целью его деконтаминации и состояния микробиологического контроля ОТК на всех этапах производства.

………………………..

………………………..

…………………………

Выводы

Одна из наиболее важных задач фармацевтической химии — это разработка и совершенствование методов оценки качества лекарственных средств.

Для установления чистоты лекарственных веществ используют различные физические, физико-химические, химические методы анализа или их сочетание. ГФ предлагает следующие методы контроля качества ЛC.

Физические и физико-химические методы. К ним относятся:

  • определение температур плавления и затвердевания, а также температурных пределов перегонки;
  • определение плотности,
  • определение показателей преломления (рефрактометрия),
  • определение оптического вращения (поляриметрия);
  • спектрофотометрия (ультрафиолетовая, инфракрасная);
  • фотоколориметрия,
  • эмиссионная и атомно-абсорбционная спектрометрия,
  • флуориметрия,
  • спектроскопия ядерного магнитного резонанса,
  • масс-спектрометрия;
  • хроматография (адсорбционная, распределительная, ионообменная, газовая, высокоэффективная жидкостная);
  • электрофорез (фронтальный, зональный, капиллярный);
  • электрометрические методы (потенциометрическое определение рН, потенциометрическое титрование, амперометрическое титрование, вольтамперометрия).

Кроме того, возможно применение методов, альтернативных фармакопейным, которые иногда имеют более совершенные аналитические характеристики (скорость, точность анализа, автоматизация). В некоторых случаях фармацевтическое предприятие приобретает прибор, в основе использования которого лежит метод, еще не включенный в Фармакопею (например, метод рамановской спектроскопии — оптический дихроизм). Иногда целесообразно при определении подлинности или испытании на чистоту заменить хроматографическую методику на спектрофотометрическую. Фармакопейный метод определения примесей тяжелых металлов осаждением их в виде сульфидов или тиоацетамидов обладает рядом недостатков. Для определения примесей тяжелых металлов многие производители внедряют такие физико-химические методы анализа, как атомно-абсорбционная спектрометрия и атомно-эмиссионная спектрометрия с индуктивно связанной плазмой.

Важной физической константой, характеризующей подлинность и степень чистоты ЛC, является температура плавления. Чистое вещество имеет четкую температуру плавления, которая изменяется в присутствии примесей. Для веществ, которые плавятся с разложением, обычно указывается температура, при которой вещество разлагается и происходит резкое изменение его вида.

В некоторых частных статьях ГФ X рекомендуется определять температуру затвердевания или температуру кипения (по ГФ XI — «температурные пределы перегонки») для ряда жидких ЛC. Температура кипения должна укладываться в интервал, приведенный в частной статье. Более широкий интервал свидетельствует о присутствии примесей.

Во многих частных статьях ГФ X приведены допустимые значения плотности, реже вязкости, подтверждающие подлинность и доброкачественность ЛC.

Практически все частные статьи ГФ X нормируют такой показатель качества ЛC, как растворимость в различных растворителях. Присутствие примесей в ЛB может повлиять на его растворимость, снижая или повышая ее в зависимости от природы примеси.

Критериями чистоты являются также цвет ЛB и/или прозрачность жидких лекарственных форм.

Определенным критерием чистоты JIC могут служить такие физические константы, как показатель преломления луча света в растворе испытуемого вещества (рефрактометрия) и удельное вращение, обусловленное способностью ряда веществ или их растворов вращать плоскость поляризации при прохождении через них плоскополяризованного света (поляриметрия). Методы определения этих констант относятся к оптическим методам анализа и применяются также для установления подлинности и количественного анализа ЛС и их лекарственных форм.

Важным критерием доброкачественности целого ряда ЛС является содержание в них воды. Изменение этого показателя (особенно при хранении) может изменить концентрацию действующего вещества, а, следовательно, и фармакологическую активность и сделать ЛС не пригодным к применению.

Химические методы. К ним относятся: качественные реакции на подлинность, растворимость, определение летучих веществ и воды, определение содержания азота в органических соединениях, титриметрические методы (кислотно-основное титрование, титрование в неводных растворителях, комплексонометрия), нитритометрия, кислотное число, число омыления, эфирное число, йодное число и др.

Биологические методы. Биологические методы контроля качества ЛС весьма разнообразны. Среди них испытания на токсичность, стерильность, микробиологическую чистоту.

Для проведения физико-химического анализа полупродуктов, субстанций лекарственных средств и готовых лекарственных форм при проверке их качества на соответствие требованиям ФС контрольно-аналитическая лаборатория должна быть оснащена следующим минимальным набором оборудования и приборов:

  • ИК-спектрофотометр (для определения подлинности); спектрофотометр для спектрометрии в видимой и УФ-области (определение подлинности, количественное определение, однородность дозирования, растворимость);
  • оборудование для тонкослойной хроматографии (ТСХ) (определение подлинности, родственных примесей);
  • хроматограф для высокоэффективной жидкостной хроматографии (ВЭЖХ) (определение подлинности, количественное определение, определение родственных примесей, однородности дозирования, растворимости);
  • газожидкостной хроматограф (ГЖХ) (содержание примесей, определение однородности дозирования);
  • поляриметр (определение подлинности, количественное определение);
  • потенциометр (измерение рН, количественное определение);
  • атомно-абсорбционный спектрофотометр (элементный анализ тяжелых металлов и неметаллов);
  • титратор К. Фишера (определение содержания воды);
  • дериватограф (определение потери массы при высушивании).

Список литературы

  1. Арзамасцев А.П. Фармакопейный анализ – М.: Медицина, 1971.
  2. Беликов В.Г. Фармацевтическая химия. В 2 частях. Часть 1. Общая фармацевтическая химия: Учеб. для фармац. ин-тов и фак. мед. ин-тов. — М.: Высш. шк., 1993. — 432 с.
  3. Глущенко Н. Н. Фармацевтическая химия: Учебник для студ. сред. проф. учеб. заведений / Н. Н. Глущенко, Т. В. Плетенева, В. А. Попков; Под ред. Т. В. Плетеневой. — М.: Издательский центр «Академия», 2004. — 384 с.
  4. Драго Р. Физические методы в химии – М.: Мир, 1981
  5. Кольтгоф И.М., Стенгер В.А. Объемный анализ В 2 томах – М.: Государственное научно-техническое издательство химической литературы, 1950
  6. Коренман И.М. Фотометрический анализ – М.: Химия, 1970
  7. Коростелев П. П, Фотометрический и комплексометрический анализ в металлургии – М.: Металлургия, 1984, 272 с.
  8. Логинова Н. В., Полозов Г. И. Введение в фармацевтическую химию: Учеб. пособие – Мн.: БГУ, 2003.-250 с.
  9. Мелентьева Г. А., Антонова Л. А. Фармацевтическая химия. — М.: Медицина, 1985.— 480 с.
  10. Мискнджьян С.П. Кравченюк Л.П. Полярография лекарственных препаратов. – К.: Вища школа, 1976. 232 с
  11. Фармацевтическая химия: Учеб. пособие / Под ред. Л.П.Арзамасцева. – М.: ГЭОТАР-МЕД, 2004. — 640 с.
  12. Фармацевтический анализ лекарственных средств / Под общей редакцией В.А.Шаповаловой – Харьков: ИМП «Рубикон», 1995
  13. Халецкий A.M. Фармацевтическая химия – Ленинград: Медицина, 1966